21.04.24, 11:05 Recoil in Next.js-Projekt | Wiki.js

Recoil in Next.js-Projekt

Recoil State Management in Next.js-Projekt

Wiki fiir Recoil State Management in Next.js-Projekt
Uberblick

Diese Wiki-Seite dokumentiert den Einsatz und die Konfiguration von Recoil fiir das State Management in
unserem Next.js-Projekt. Recoil wird verwendet, um den Zustand unserer Anwendung auf einfache und
effektive Weise zwischen den Komponenten zu teilen.

Einrichtung
Installation

Um Recoil in Ihrem Projekt zu verwenden, installieren Sie es zuerst iber npm:

1 | npm install recoil

Einrichten des RecoilRoot

Um Recoil in lhrer Anwendung zu nutzen, miissen Sie die gesamte Anwendung (oder zumindest den Teil, der
den Zustand verwaltet) mit einem <RecoilRoot> -Provider umschlieBen. Dies geschieht typischerweise in
der _app. js -Datei von Next.js:

1 | // pages/_app.js

2 | import { RecoilRoot } from 'recoil’;
3

4 | function MyApp({ Component, pageProps }) {
5 return (

6 <RecoilRoot>

7 <Component {...pageProps} />

8 </RecoilRoot>

9 )

10 | }

11

12 | export default MyApp;

192.168.10.189/en/home 1/4



21.04.24, 11:05 Recoil in Next.js-Projekt | Wiki.js

Verwendung von Atomen

Atome sind die grundlegenden Einheiten des Zustands in Recoil. Jedes Atom hat einen eindeutigen Schliissel
und einen Standardwert.

Definieren eines Atoms

Definieren Sie Atome in einer zentralen Datei, um sie leicht in verschiedenen Komponenten
wiederzuverwenden:

1 | // features/gisStationState.js

2 | import { atom } from 'recoil’;

3

4 | export const gisStationsStaticDistrictState = atom({
5 key: 'gisStationsStaticDistrict',

6 default: [],

70 1)

Zustand in Komponenten verwenden

Recoil bietet verschiedene Hooks, um den Zustand in Ihren Komponenten zu verwalten:

>

useRecoilState : Gibt ein Zustandspaar zuriick (&hnlich wie useState ), das den Zustandswert
und eine Setter-Funktion enthalt.

> useRecoilValue : Gibt nur den aktuellen Zustandswert zuriick, ohne die Méglichkeit zur
Aktualisierung.

> useSetRecoilState : Gibt nur eine Funktion zum Aktualisieren des Zustands zuriick, was die
Komponente effizienter macht, da sie nicht bei jeder Zustandsadnderung neu gerendert wird.

Beispiele

MapComponent.js

In MapComponent. js verwenden Sie useRecoilState ,um den Zustand sowohl zu lesen als auch
zu aktualisieren:

// components/MapComponent.js
import { useRecoilState } from 'recoil’;
import { gisStationsStaticDistrictState } from '../features/gisStationState';

const MapComponent = () => {
const [GisStationsStaticDistrict, setGisStationsStaticDistrict] = useRecoil$:

192.168.10.189/en/home

2/4



21.04.24, 11:05 Recoil in Next.js-Projekt | Wiki.js

8 const updateDistricts = (districts) => {

9 setGisStationsStaticDistrict(districts);

10 }:

11

12 return (

13 // Komponenten-Rendering

14 );

15 }:

>

DataSheet.js

In DataSheet. js verwenden Sie useRecoilValue ,um den Zustand nur zu lesen, da diese
Komponente den Zustand nicht andern muss:

1 // components/DataSheet.js
2 | import React from "react"”;
3 | import { useRecoilValue } from 'recoil’;
4 | import { gisStationsStaticDistrictState } from '../features/gisStationState’;
5
6 | function DataSheet() {
7 const GisStationsStaticDistrict = useRecoilValue(gisStationsStaticDistrictSt
8
9 return (
10 <div id="mainDataSheet" className="absolute top-3 right-3 w-1/6 min-w-[300
11 <ul>
12 {GisStationsStaticDistrict.map(station => (
13 <li key={station.id}>{station.name}</1i>
14 ))}
15 </ul>
16 </div>
17 )
18 | }
19
20 | export default DataSheet;
>
Debugging

Nutzen Sie Recoil DevTools fiir eine effektive Zustandsverwaltung und Debugging. Diese Tools bieten Einblicke
in den Zustand Ihrer Anwendung und helfen bei der Fehlersuche.

192.168.10.189/en/home

3/4



