
21.04.24, 11:05 Recoil in Next.js-Projekt | Wiki.js

192.168.10.189/en/home 1/4

Recoil in Next.js-Projekt
Recoil State Management in Next.js-Projekt

Diese Wiki-Seite dokumentiert den Einsatz und die Konfiguration von Recoil für das State Management in
unserem Next.js-Projekt. Recoil wird verwendet, um den Zustand unserer Anwendung auf einfache und
effektive Weise zwischen den Komponenten zu teilen.

Um Recoil in Ihrem Projekt zu verwenden, installieren Sie es zuerst über npm:

Um Recoil in Ihrer Anwendung zu nutzen, müssen Sie die gesamte Anwendung (oder zumindest den Teil, der

den Zustand verwaltet) mit einem <RecoilRoot> -Provider umschließen. Dies geschieht typischerweise in

der _app.js -Datei von Next.js:

Wiki für Recoil State Management in Next.js-Projekt
Überblick

Einrichtung
Installation

npm install recoil1

Einrichten des RecoilRoot

// pages/_app.js
import { RecoilRoot } from 'recoil';

function MyApp({ Component, pageProps }) {
 return (
 <RecoilRoot>
 <Component {...pageProps} />
 </RecoilRoot>
);
}

export default MyApp;

1
2
3
4
5
6
7
8
9
10
11
12

21.04.24, 11:05 Recoil in Next.js-Projekt | Wiki.js

192.168.10.189/en/home 2/4

Atome sind die grundlegenden Einheiten des Zustands in Recoil. Jedes Atom hat einen eindeutigen Schlüssel
und einen Standardwert.

Definieren Sie Atome in einer zentralen Datei, um sie leicht in verschiedenen Komponenten
wiederzuverwenden:

Recoil bietet verschiedene Hooks, um den Zustand in Ihren Komponenten zu verwalten:

In MapComponent.js verwenden Sie useRecoilState , um den Zustand sowohl zu lesen als auch
zu aktualisieren:

Verwendung von Atomen

Definieren eines Atoms

// features/gisStationState.js
import { atom } from 'recoil';

export const gisStationsStaticDistrictState = atom({
 key: 'gisStationsStaticDistrict',
 default: [],
});

1
2
3
4
5
6
7

Zustand in Komponenten verwenden

useRecoilState : Gibt ein Zustandspaar zurück (ähnlich wie useState), das den Zustandswert
und eine Setter-Funktion enthält.

▸

useRecoilValue : Gibt nur den aktuellen Zustandswert zurück, ohne die Möglichkeit zur
Aktualisierung.

▸

useSetRecoilState : Gibt nur eine Funktion zum Aktualisieren des Zustands zurück, was die
Komponente effizienter macht, da sie nicht bei jeder Zustandsänderung neu gerendert wird.

▸

Beispiele
MapComponent.js

// components/MapComponent.js
import { useRecoilState } from 'recoil';
import { gisStationsStaticDistrictState } from '../features/gisStationState';

const MapComponent = () => {
 const [GisStationsStaticDistrict, setGisStationsStaticDistrict] = useRecoilSt

21.04.24, 11:05 Recoil in Next.js-Projekt | Wiki.js

192.168.10.189/en/home 3/4

In DataSheet.js verwenden Sie useRecoilValue , um den Zustand nur zu lesen, da diese
Komponente den Zustand nicht ändern muss:

Nutzen Sie Recoil DevTools für eine effektive Zustandsverwaltung und Debugging. Diese Tools bieten Einblicke
in den Zustand Ihrer Anwendung und helfen bei der Fehlersuche.

 const updateDistricts = (districts) => {
 setGisStationsStaticDistrict(districts);
 };

 return (
 // Komponenten-Rendering
);
};

8
9
10
11
12
13
14
15

DataSheet.js

// components/DataSheet.js
import React from "react";
import { useRecoilValue } from 'recoil';
import { gisStationsStaticDistrictState } from '../features/gisStationState';

function DataSheet() {
 const GisStationsStaticDistrict = useRecoilValue(gisStationsStaticDistrictSta

 return (
 <div id="mainDataSheet" className="absolute top-3 right-3 w-1/6 min-w-[300p

 {GisStationsStaticDistrict.map(station => (
 <li key={station.id}>{station.name}
))}

 </div>
);
}

export default DataSheet;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Debugging

